Wednesday, July 22, 2020

PLANETARIUM


Planetarium 
 A planetarium (plural planetaria or planetariums) is a theatre built primarily for presenting educational and entertaining shows about astronomy and the night sky, or for training in celestial navigation.

A dominant feature of most planetaria is the large dome-shaped projection screen onto which scenes of starsplanets, and other celestial objects can be made to appear and move realistically to simulate the complex 'motions of the heavens'. The celestial scenes can be created using a wide variety of technologies, for example precision-engineered 'star balls' that combine optical and electro-mechanical technology, slide projectorvideo and full dome projector systems, and lasers. Whatever technologies are used, the objective is normally to link them together to simulate an accurate relative motion of the sky. Typical systems can be set to simulate the sky at any point in time, past or present, and often to depict the night sky as it would appear from any point of latitude on Earth

The term planetarium is sometimes used generically to describe other devices which illustrate the solar system, such as a computer simulation or an orneryPlanetarium software refers to a software application that renders a three-dimensional image of the sky onto a two-dimensional computer screen. The term planetarian is used to describe a member of the professional staff of a planetarium.

HISTORY
The ancient Greek polymath Archimedes is attributed with creating a primitive planetarium device that could predict the movements of the Sun and the Moon and the planets. The discovery of the Antikythera mechanism proved that such devices already existed during antiquity, though likely after Archimedes' lifetime. Campanus of Novara (1220–1296) described a planetary equatorium in his Theorica Planetarum, and included instructions on how to build one. The Globe of Gottorf built around 1650 had constellations painted on the inside. These devices would today usually be referred to as orreries (named for the Earl of Orrery, an Irish peer: an 18th-century Earl of Orrery had one built). In fact, many planetaria today have what are called projection orreries, which project onto the dome a Sun with planets (usually limited to Mercury up to Saturn) going around it in something close to their correct relative periods.
Domes
Planetarium domes range in size from 3 to 35 m in diameter, accommodating from 1 to 500 people. They can be permanent or portable, depending on the application
Traditional electromechanical/optical projectors

Traditional planetarium projection apparatus uses a hollow ball with a light inside, and a pinhole for each star, hence the name "star ball". With some of the brightest stars (e.g. SiriusCanopusVega), the hole must be so big to let enough light through that there must be a small lens in the hole to focus the light to a sharp point on the dome. In later and modern planetarium star balls, the individual bright stars often have individual projectors, shaped like small hand-held torches, with focusing lenses for individual bright stars. Contact breakers prevent the projectors from projecting below the 'horizon'
However, the new breed of Optical-Mechanical projectors using fiber-optic technology to display the stars shows a much more realistic view of the sky.

 

 

 

 

Digital projectors

 

An increasing number of planetaria are using digital technology to replace the entire system of interlinked projectors traditionally employed around a star ball to address some of their limitations. Digital planetarium manufacturers claim reduced maintenance costs and increased reliability from such systems compared with traditional "star balls" on the grounds that they employ few moving parts and do not generally require synchronisation of movement across the dome between several separate systems. Some planetaria mix both traditional opto-mechanical projection and digital technologies on the same dome.
In a fully digital planetarium, the dome image is generated by a computer and then projected onto the dome using a variety of technologies including cathode ray tubeLCDDLP or laser projectors. Sometimes a single projector mounted near the centre of the dome is employed with a fisheye lens to spread the light over the whole dome surface, while in other configurations several projectors around the horizon of the dome are arranged to blend together seamlessly.
Digital projection systems all work by creating the image of the night sky as a large array of pixels. Generally speaking, the more pixels a system can display, the better the viewing experience. While the first generation of digital projectors were unable to generate enough pixels to match the image quality of the best traditional "star ball" projectors, high-end systems now offer a resolution that approaches the limit of human visual acuity.
REF : Wikipedia


No comments:

Post a Comment